

EPIDEMIC SPREADING

Nicola Perra n.perra@neu.edu

LABORATORY FOR THE MODELING OF BIOLOGICAL AND SOCIO-TECHNICAL SYSTEMS

Modeling such processes is an old enterprise

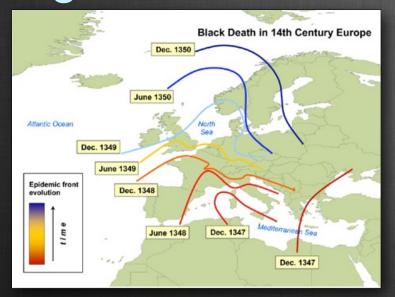
- Bernoulli in 1760 studied the effectiveness of inoculation against smallpox
- Long tradition in mathematical sciences
- · Let us focus on human-to-human interactions

Modeling epidemic spreading

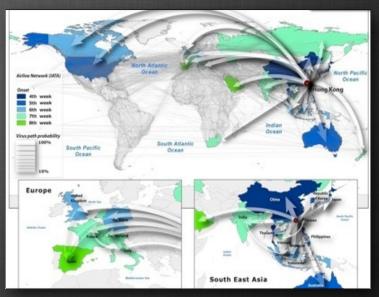
- We have an arsenal of models
- Each one is suited to specific diseases
- ...and specific geographical scales
- Data is the big limiting factor

EPIDEMICS AND HUMAN DYNAMICS

Our mobility and contacts are crucial ingredients



Black death



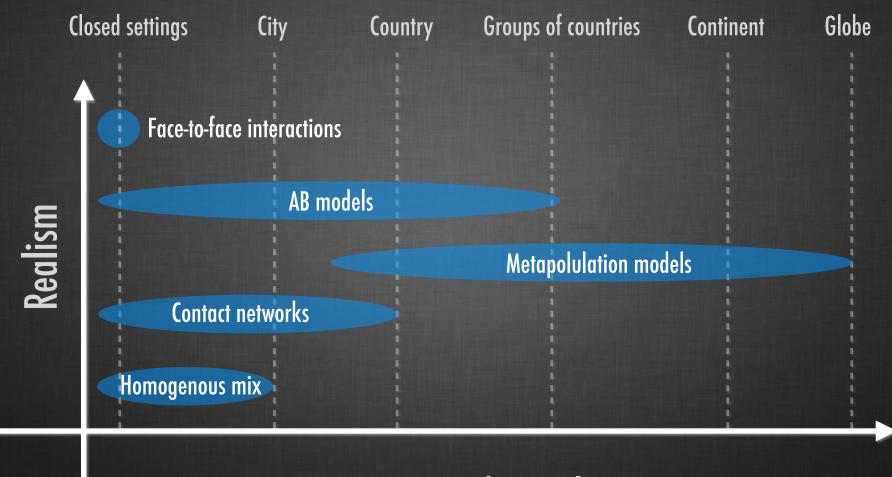
SARS

EPIDEMICS AND HUMAN DYNAMICS

Feb 18 2009

Chicago New York Los Angeles Houston Toronto Vancouver Calgary Indianapolis	Pa Fr Ar R M M	ondon aris rankfurt msterdam dome lilan loscow ublin
La Gloria Sao Paulo Mexico City Rio De Janeiro San Juan Bogota	To Ba Si Be	long Kong okyo Narita angkok ingapore eijing lanila
Johannesburg Cairo Cape Town Nairobi	Br	ydney risbane uckland erth

GEOGRAPHIC SCALE



Geographic scale

Basic concepts

- Population divided in compartments according to the disease status
- · Susceptible (S)
- · Latent (L)
- · Infectious (I)
- · Recovered (R)



Natural history of the disease

- Describe the possible steps, and sequence of transitions between compartments
- There three main classes of diseases
 - SI
 - SIS
 - SIR

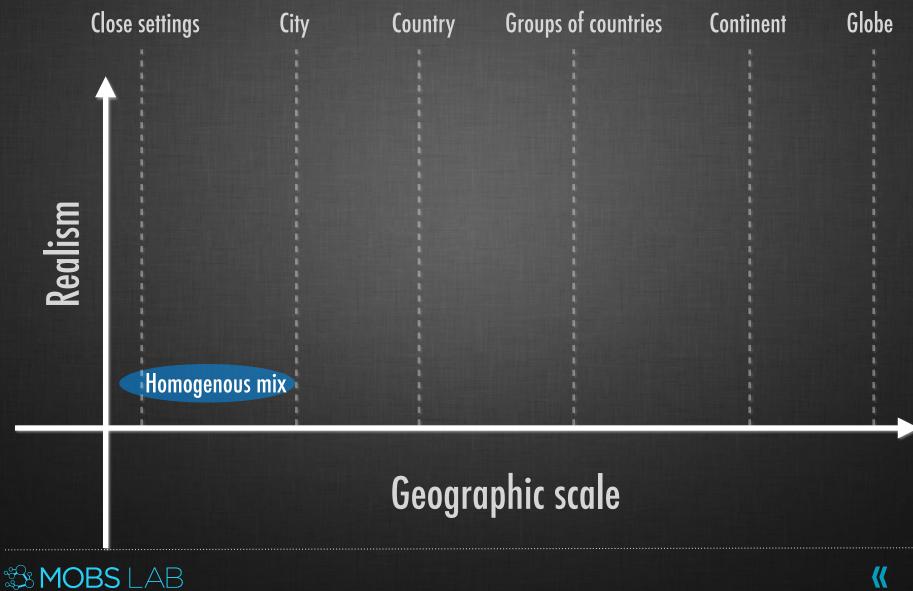
Modeling transition between compartments

Infection process $S + I \rightarrow 2I$

Recovery process $I \rightarrow R$

Modeling the infection process

- Intuitively it should be function of :
 - the number of infected individuals in the population
 - the probability of infection given a contact with an infected
 - the number of such contacts



Force of infection

Per capita rate at which susceptibles contract the disease

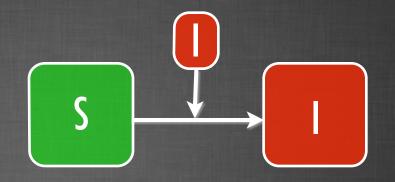
mass-action law

 $\lambda = \beta \frac{I}{N}$

 β : transmission rate

SI model

- Simplest model
- Infection is permanent
- Examples: HIV, HBV,



$$S(t+dt) = S(t) - \beta S(t) \frac{I(t)}{N} dt$$
$$I(t+dt) = I(t) + \beta S(t) \frac{I(t)}{N} dt$$

MOBS LAB We consider the population size constant!

In the

$$d_t S = -\beta S \frac{I}{N}$$
$$d_t I = \beta S \frac{I}{N}$$

Often convenient using densities

$$d_t s = -\beta s i$$
 $s \equiv rac{S}{N}$
 $d_t i = \beta s i$ $i \equiv rac{I}{N}$

Python code

population=np.zeros(2,int)
0, will be referring to S
1, will be referring to I

```
def SI(population,beta,N):
    # the force of infection is given by beta*I/N
    prob_of_infection=beta*population[1]/N
    # given this prob. we can evaluate the number of people
    # going from S to I
    delta_pop=np.random.binomial(population[0],prob_of_infection)
    # update the population status
    population[0]-=delta_pop
    population[1]+=delta_pop
```


MATHEMATICAL

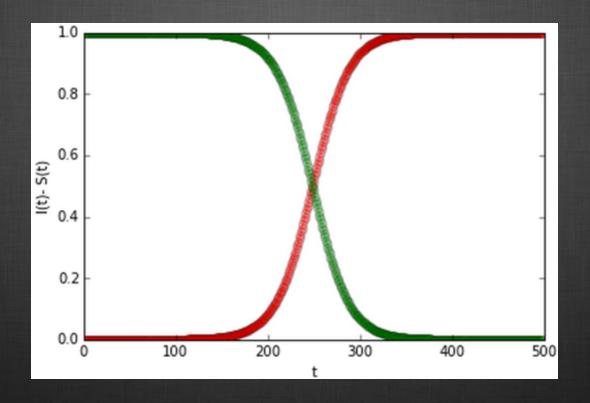
Exact

$$i(t) = \frac{1}{1 + \frac{a}{b}e^{-\beta t}}$$

$$s(t) = 1 - i(t)$$

$$s(\infty) = 0, i(\infty) = 1$$

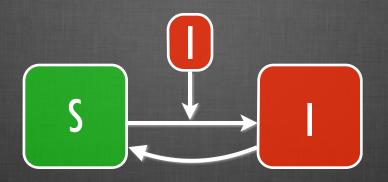
Numerical



SIS model

Infection is not permanent, there is a recovery process

· Individuals after recovery are susceptible again



$$d_t s = -\beta si + \mu i \qquad d_t i = \beta si - \mu i$$

Early time

• The number of infectious is small respect to the population size $(s \sim 1, i \sim 0)$

$$d_t i = \beta i - \mu i = (\beta - \mu)i$$

• Epidemic threshold:



Basic reproductive number

- Central concept in epidemiology
- Definition: average number of secondary infections generated by a initial seed in a fully susceptible population
- Its expression depends on the details of the disease

$$R_0 = \frac{\beta}{\mu}$$

Python code

def SIS(population,beta,mu,N):
 # the force of infection is given by beta*I/N
 prob_of_infection=beta*population[1]/N
 # given this prob. we can evaluate the number of people
 # going from S to I
 delta_I=np.random.binomial(population[0],prob_of_infection)

```
# now we have another transition I->S
prob_of_recovery=mu
delta_S=np.random.binomial(population[1],prob_of_recovery)
```

```
# update the population status
population[0]=population[0]-delta_I+delta_S
population[1]=population[1]+delta_I-delta_S
```


Exact solution

$$i(t) = \frac{\beta - \mu}{\beta + ae^{-\mu(R_0 - 1)t}}$$

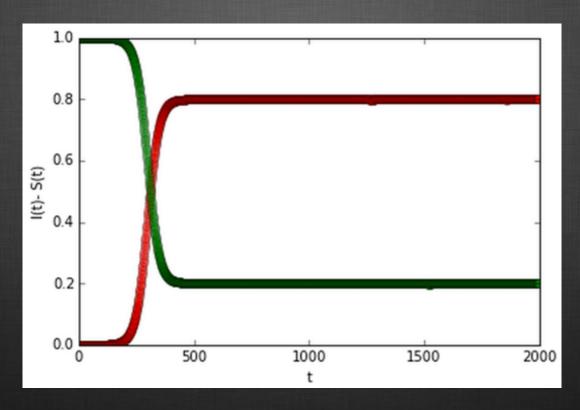
Disease-free equilibrium

if
$$R_0 < 1$$
 $i(\infty) = 0$

Endemic state

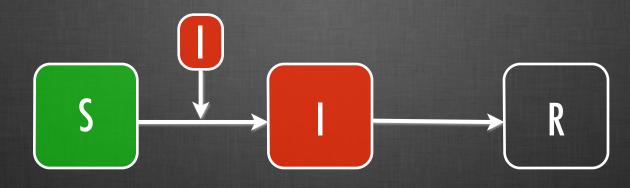
$$if \ R_0 \ge 1 \ i(\infty) = 1 - \frac{1}{R_0}$$

Numerical



SIR model

- Infection is not permanent, there is a recovery process
- Individuals after recovery are not susceptible again
- Examples: Influenza like illnesses (ILIs)



 $d_t s = -\beta si$ $d_t i = \beta si - \mu i$ $d_t r = \mu i$

Early time

- Easy to prove that the same results for SIS hold
- · Same epidemic threshold!



Disease free equilibrium

The disease will eventuality die off

 $s(\infty) = s_0 e^{-R_0 r(\infty)}$

There will always be some individuals not affected!

Python code

population=np.zeros(3,int)
0, will be referring to S
1, will be referring to I
2, will be referring to R

def SIR(population,beta,mu,N):

the force of infection is given by beta*I/N
prob_of_infection=beta*population[1]/N
given this prob. we can evaluate the number of people
going from S to I
delta I=np.random.binomial(population[0],prob of infection)

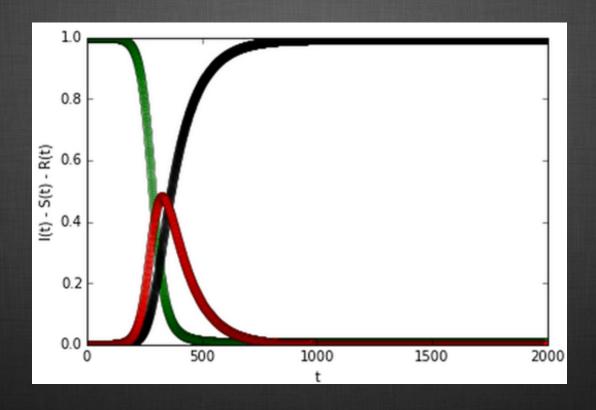
now we have another transition I->R

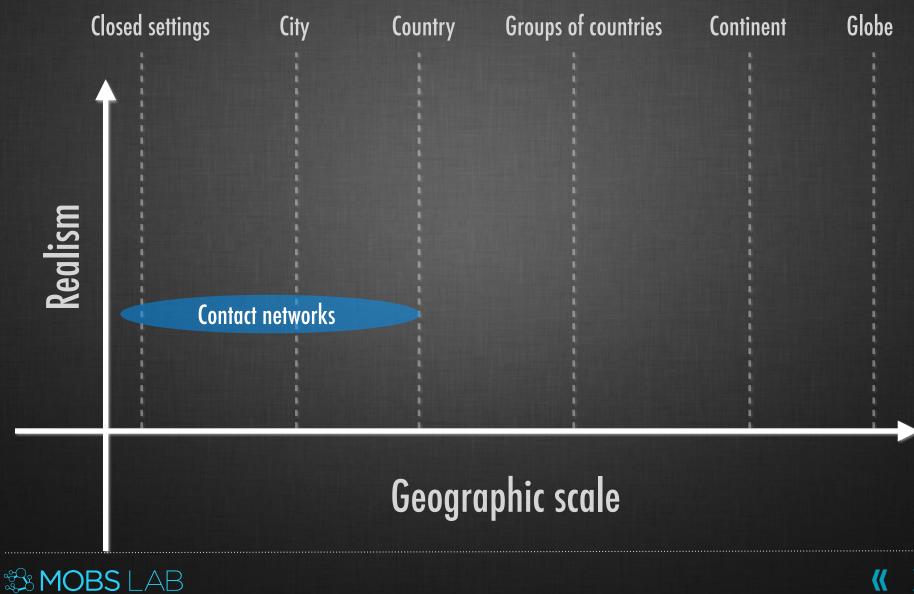
prob_of_recovery=mu
delta_R=np.random.binomial(population[1],prob_of_recovery)

update the population status

population[0]=population[0]-delta_I
population[1]=population[1]+delta_I-delta_R
population[2]=population[2]+delta_R

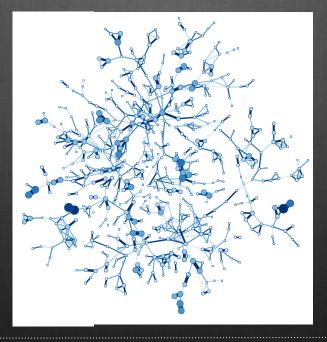
Numerical





Epidemics in contact networks

- · We relax the well mixed approximation
- We consider explicitly a connectivity network G
- · Each node is person, and each link is an interaction (phone



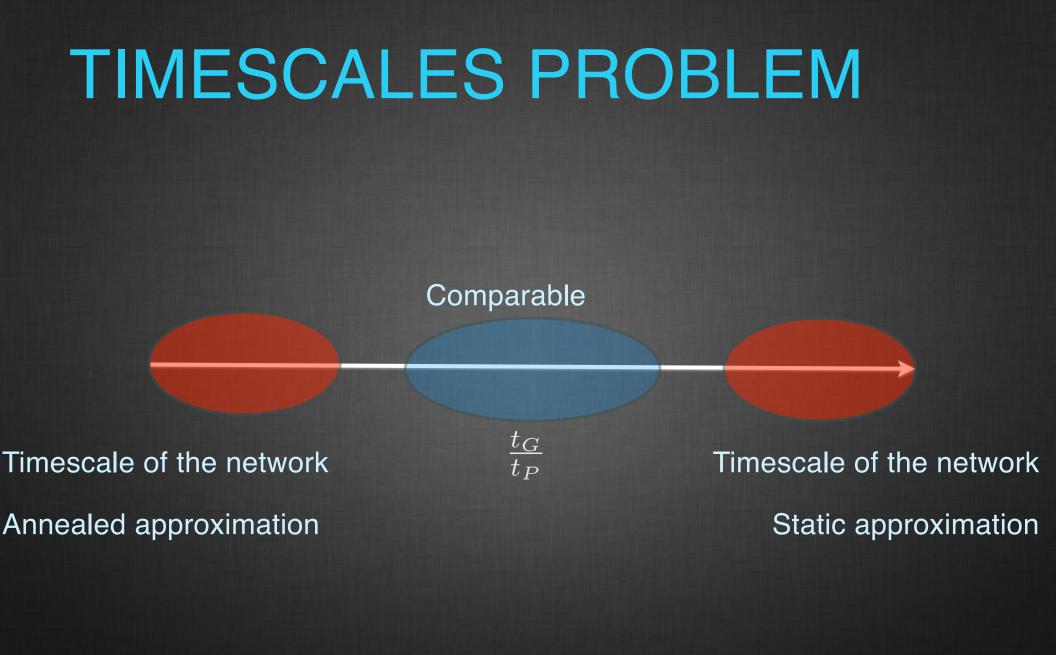
Karsai et al, Sci. Rep., 4, 4001, 2014

Epidemics in contact networks

- According to the data available different type of network representation can be used
- · Weighted, unweighted, and temporal

In general we have two timescales:

- t_P describes the evolution of the process
- t_G describes the evolution of the network



Important note

- Infectious diseases spread through real interactions!
- Phone data could serve as proxies of social circles



Modeling the contagion in contact

$$\lambda_i = p \sum_j A_{ij} X_j$$

 $X_i = \begin{cases} 1 & \text{if } i \text{ is infected} \\ 0 & \text{otherwise} \end{cases}$

 $A_{ij} = \begin{cases} 1 & \text{if } i \text{ is connected to } j \\ 0 & \text{otherwise} \end{cases}$

p: probability of infection per contact

Standard MOBS LAB

m

p

p

• In the case of weighted

$$\lambda_i = p \sum_j W_{ij} X_j$$

 $X_i = \begin{cases} 1 & \text{if } i \text{ is infected} \\ 0 & \text{otherwise} \end{cases}$

 $W_{ij} = \begin{cases} w & \text{if } i \text{ was connected to } j w \text{ times} \\ 0 & \text{otherwise} \end{cases}$

p: probability of infection per contact

m

p

p

Modeling the recovery in contact networks

• The same as before!

Python code (SIS model)

status=np.zeros(N,int)

```
def SIS net(G,p,mu,status):
    # we make the process syncronous
   # at each time step all infected indivuals can infect their peers
    # status is a vector that takes two values for each node
    # 0 -> S
    # 1 -> I
   temp inf=set()
   temp rec=set()
    for i in G.nodes():
        # if the node is infected
       if status[i]==1:
            # we go through her neighbors and we try to infect the S
            for j in G.neighbors(i):
                if status[j]==0 and uniform(0,1)<p:</pre>
                    temp inf.add(j) # this node will be infected next
            # recovery process
            if uniform(0,1)<mu:
                temp rec.add(i)
    # update the status
    for i in temp inf:
        status[i]=1
    for i in temp rec:
        status[i]=0
```


Effects of network structure

- Social networks are characterized by several important features that affect spreading processes:
 - the number of contacts is typically heterogeneous (facilitates the spreading)

 the intensity of contacts is typically heterogeneous (slows down the spreading)



Understanding the effect of heterogenous number of contacts

 Let us consider a network G(N,E) described by a degree distribution P(k)

$$d_t i_k = -\mu i_k + pk(1 - i_k)\Theta_k$$

Θ_k : density of infected neighbors

In the case of uncorrelated networks the epidemic thresholds reads

R. Pastor-Satorras, et al, PRL, $\frac{p}{\mu} \geq \frac{\langle k \rangle}{\langle k^2 \rangle}$ 86,14,2001

Considering realistic degree

 $\langle k \rangle \ll \langle k^2 \rangle$

The heterogeneity in the distribution of contacts

This is a worrisome scenario

- The degree distribution of real networks tends to facilitate the spreading
- Not all the nodes play the same role in the spreading
- · Some, the most central, are crucial in sustaining the process
- · If we can find them, we can efficiently protect the network

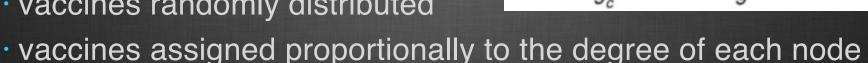
Two main classes

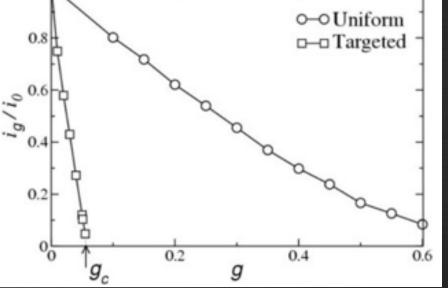
- Global knowledge is required
- nodes can be selected considering their degree,
 betweenness, pagerank, closeness, k-core, etc.., centrality
- Just partial access to the network is necessary
- nodes can be selected through sampling processes

Pastor-Satorras, PRE, 65, 036

Problem formulation

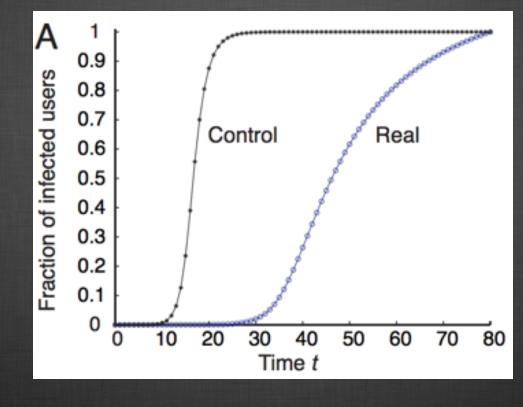
- We have a fraction g of vaccines to
- Each node vaccinated is fully protect
- Let us see two different cases
- vaccines randomly distributed



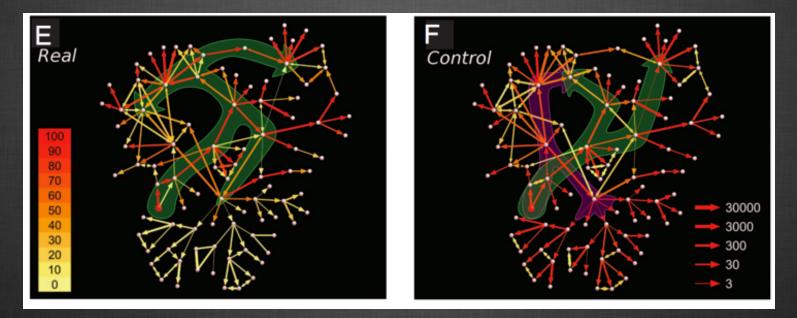


Understanding the effect of heterogenous intensity of contacts

- Let us consider a real mobile phone datasets (Onnela et al, PNAS, 104, 18, 2007)
- Let us study the spread of a SI process on top
- As control we consider a network with the same degree



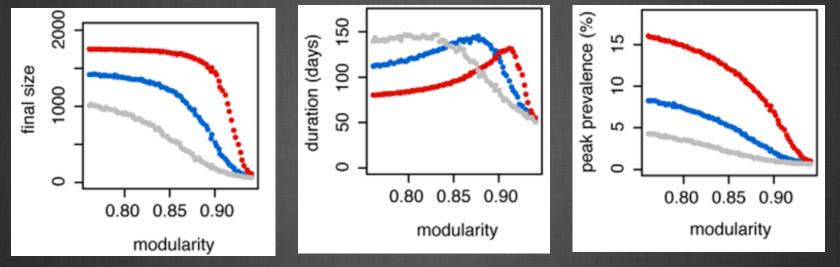
Onnela et al, PNAS, 104, 18, 2007



Onnela et al, PNAS, 104, 18, 2007

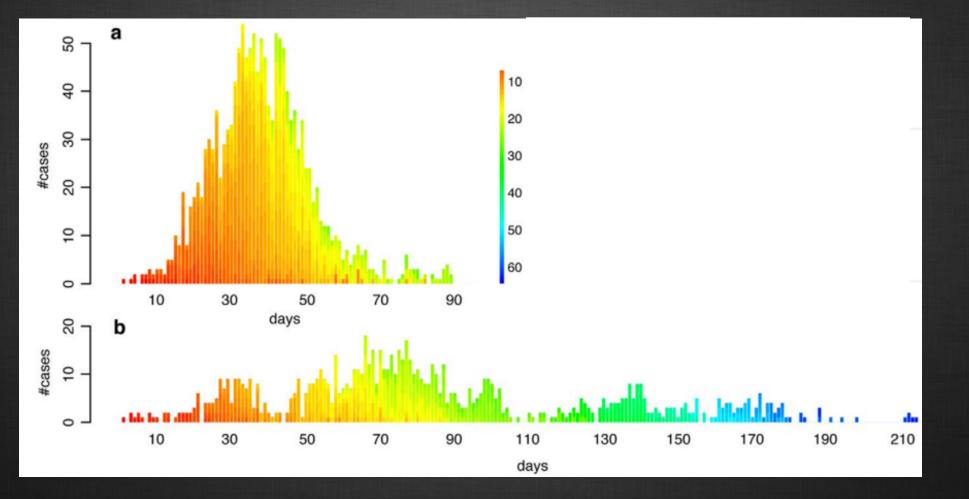
Understanding the effect of community structure

• Let us consider a set of synthetic networks with different modularity (Salathe et al., PLoS Comp. Bio., 6, 4, 2010)



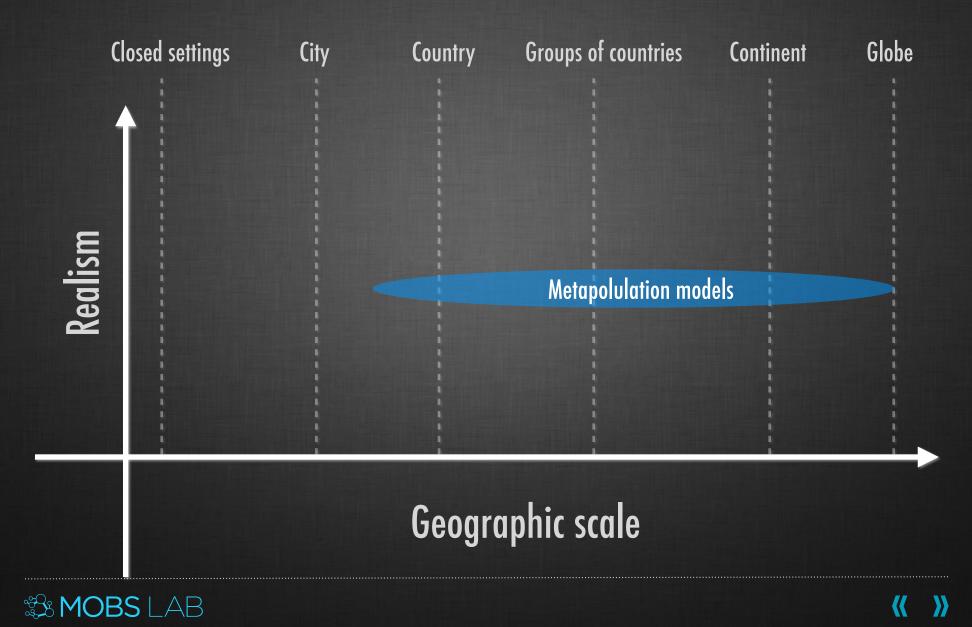
Salathe et al., PLoS Comp. Bio., 6, 4, 20

Grey R0=2.5 Blue R0=3 Red R0=4



Salathe et al., PLoS Comp. Bio., 6, 4

METAPOPULATION



METAPOPULATION

Typically used to model patchy systems coupled by mobility

- Each patch is a geographical unit
- Patches are connected by mobility

METAPOPULATION

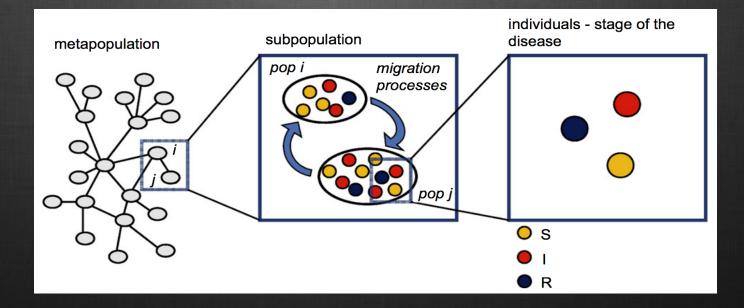
Used in many disciplines, plus..

- Extremely useful to reduce the level data necessary at large geographical scales
- Mobility data is available at many different scales



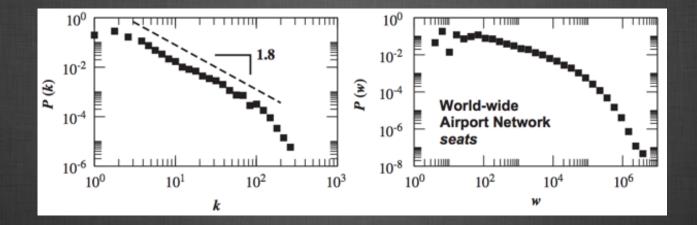
Reaction-Diffusion framework

 Considering the general lack on information about contacts inside each patch we can use the homogenous assumption inside each node



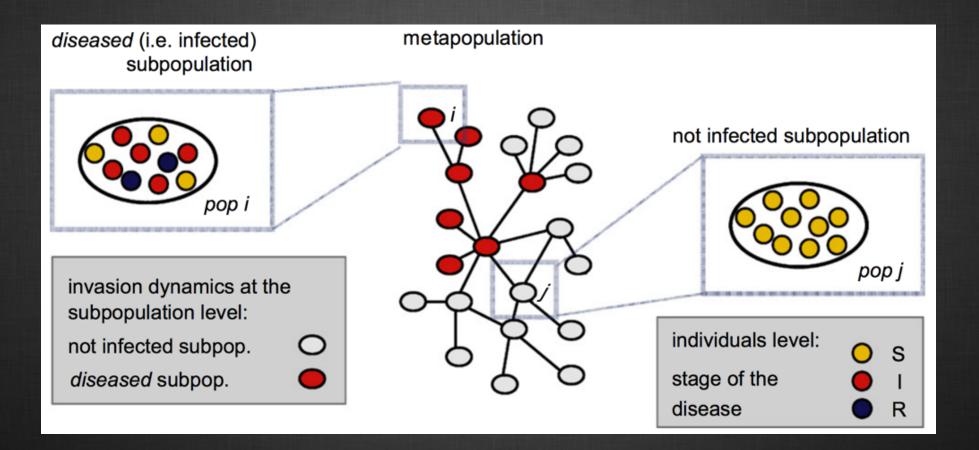
Colizza et al, JTB, 251, 450-467, 2008

Real networks

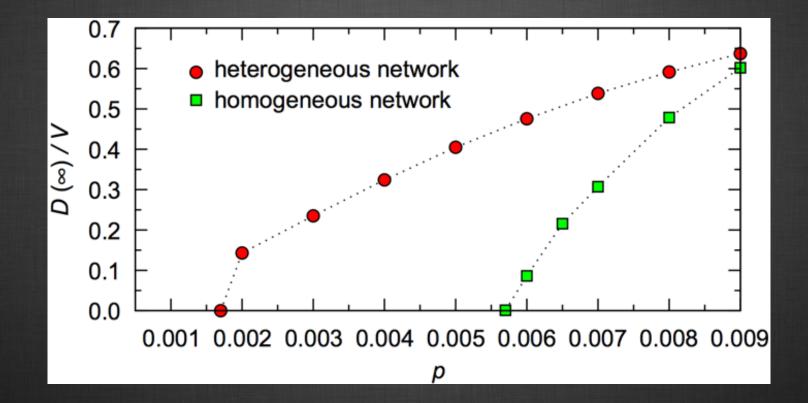


Also in this case degree and weight are heterogenous!

Colizza et al, JTB, 251, 450-467, 2008



Colizza et al, JTB, 251, 450-467, 2008



Critical effects introduced by heterogenous degree distributions!

Colizza et al, JTB, 251, 450-467, 2008

Standard MOBS LAB

Codes available at http://www.nicolaperra.com/teaching.html

CONTACT

Nicola Perra

n.perra@neu.edu www.nicolaperra.com

Northeastern University Nightingale Hall, Suite 132 360 Huntington Avenue Boston, MA 02115

LABORATORY FOR THE MODELING OF BIOLOGICAL AND SOCIO-TECHNICAL SYSTEMS